Molecular Aspects of Polyene- and Sterol-Dependent Pore Formation in Thin Lipid Membranes
نویسندگان
چکیده
Amphotericin B modifies the permeability properties of thin lipid membranes formed from solutions containing sheep red cell phospholipids and cholesterol. At 10(-6)M amphotericin B, the DC membrane resistance fell from approximately 10(8) to approximately 10(2) ohm-cm(2), and the membranes became Cl(-)-, rather than Na(+)-selective; the permeability coefficients for hydrophilic nonelectrolytes increased in inverse relationship to solute size, and the rate of water flow during osmosis increased 30-fold. These changes may be rationalized by assuming that the interaction of amphotericin B with membrane-bound sterol resulted in the formation of aqueous pores. N-acetylamphotericin B and the methyl ester of N-acetylamphotericin B, but not the smaller ring compounds, filipin, rimocidin, and PA-166, produced comparable permeability changes in identical membranes, and amphotericin B and its derivatives produced similar changes in the properties of membranes formed from phospholipid-free sterol solutions. However, amphotericin B did not affect ionic selectivity or water and nonelectrolyte permeability in membranes formed from solutions containing phospholipids and no added cholesterol, or when cholesterol was replaced by either cholesterol palmitate, dihydrotachysterol, epicholesterol, or Delta5-cholesten-3-one. Phospholipid-free sterol membranes exposed to amphotericin B or its derivatives were anion-selective, but the degree of Cl(-) selectivity varied among the compounds, and with the aqueous pH. The data are discussed with regard to, first, the nature of the polyene-sterol interactions which result in pore formation, and second, the functional groups on amphotericin B responsible for membrane anion selectivity.
منابع مشابه
The Ion Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B
Characteristics of nystatin and amphotericin B action on thin (<100 A) lipid membranes are: (a) micromolar amounts increase membrane conductance from 10(-8) to over 10(-2) Omega(-1) cm(-2); (b) such membranes are (non-ideally) anion selective and discriminate among anions on the basis of size; (c) membrane sterol is required for action; (d) antibiotic presence on both sides of membrane strongly...
متن کاملOn the one-sided action of amphotericin B on lipid bilayer membranes
The one-sided action of the polyene antibiotic, amphotericin B, on phospholipid bilayer membranes formed from synthetic phosphatidylcholines (DOPC and DPhPC) and sterols (ergosterol and cholesterol), has been investigated. We found formation of well-defined ionic channels for both sterols and not only for ergosterol-containing membranes (Bolard, J., P. Legrand, F. Heitz, and B. Cybulska. 1991. ...
متن کاملOn the One-Sided Action ofAmphotericin B on Lipid Bilayer Membranes
The one-sided action of the polyene antibiotic, amphotericin B, on phospholipid bilayer membranes formed from synthetic phosphatidylcholines (DOPC and DPhPC) and sterols (ergosterol and cholesterol), has been investigated. We found formation of welldefined ionic channels for both sterols and not only for ergosterol-containing membranes (Bolard, J., P. Legrand, F. Heitz, and B. Cybulska. 1991. B...
متن کاملDetermining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?
This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...
متن کاملDetermining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?
This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 55 شماره
صفحات -
تاریخ انتشار 1970